
Using the SRA Data Block Descriptor
Draft J 11 Nov 2009

National Center for Biotechnology Information – National Library of Medicine

1 Overview

The SRA schema version 1.1 release candidate j (SRA_1-1j) supports the following constructs to
help describe the assignment of run file objects to SRA run data blocks. Run DATA_BLOCKs are
specifications for the archive loader. Once loaded into the archive, the parameters are no
longer needed in order to interpret the data that was archived.

This content will eventually join the SRA XML Writer’s Guide.

1.1 Overview of Data Block Descriptor Usage

The SRA Run DATA_BLOCK is intended for use to convey information to archive loaders. Once
the data have been loaded into the Archive and converted into an SRA native object, the
information in the DATA_BLOCK descriptor is no longer relevant to users of the data.

The DATA_BLOCK is optional in the schema, but is required for all RUN XML documents used for
submission. This is so that when RUN XML documents are returned to users of the Archive, or
mirrored between Archives, the DATA_BLOCK section can be redacted.

There are two classes of parameters: DATA_BLOCK descriptor attributes and FILE attributes.

1.2 Related Documents

 SRA File Formats Guide (under development)

 SRA XML Specification Release SRA_1-1 Change Notice

2 DATA_BLOCK Descriptor Attributes

2.1 Multiple Data Blocks

The XML schema allows you to specify multiple data blocks in sequence order, but you are not
guaranteed to emit the blocks in any order. Use the new DATA_BLOCK.serial attribute to
impose a total ordering on the data blocks so that they will get loaded in the order specified.

Example: One SOLiD run broken into 95 pieces for ease of transmission:

 <DATA_BLOCK name="VAB_Florence_20080709_1_1000G_10" serial="1">

 <FILES>

 <FILE filename="Florence_20080709_1_1000G_10.0001.0001_0025.srf"

 filetype="srf">

 </FILE>

 </FILES>

 </DATA_BLOCK>

 <DATA_BLOCK name="VAB_Florence_20080709_1_1000G_10" serial="26">

 <FILES>

 <FILE filename="Florence_20080709_1_1000G_10.0002.0026_0050.srf"

 filetype="srf">

 </FILE>

 </FILES>

 </DATA_BLOCK>

and so on.

2.2 Multiple Samples, User De-multiplexed

The XML schema now allows you to specify multiple data blocks per run each of which is
assigned to a subset of the sequencing that is associated with a particular sample. In this case
the submitter has de-multiplexed the sequencing run and submitted separate files. A default
file may be used to contain the reads that did not get assigned to a particular sample. The
DATA_BLOCK.member attribute records the pool member name that the reads should be
assigned to.

 <DATA_BLOCK

 serial = "1"

 name = "FMSX0OV"

 region = "1"

 member_name = "default"

 >

 <FILES>

 <FILE filename="default.sff"

filetype="sff"

checksum_method="MD5"

checksum="4026fc6b91ed2ffbef374a665e02802b" />

 </FILES>

 </DATA_BLOCK>

 <DATA_BLOCK

 serial = "2"

 name = "FMSX0OV"

 region = "1"

 member_name = "R27Cecum"

 >

 <FILES>

 <FILE filename="R27Cecum.sff"

filetype="sff"

checksum_method="MD5"

checksum="7f7ba170dbc6a25409a5eb6d845da88f" />

 </FILES>

 </DATA_BLOCK>

3 FILE Descriptor Attributes
Here is a quick guide for how to use the FILE descriptor attributes for text data. More details
follow in the sections below.

File Forms Libr

ary
Type
(F=F
rag,
P=p
aire
d)

Num
ber
of
files

Filetype READ_LABEL(s)
Bracket
indicate array
of choices for
one file.

DATA_SERIES_LABEL(s)
Bracket indicates an
array of choices for one
file.

quality_
scoring_
system

quality_enc
oding

ascii_offs
et

csfasta file
qual file

F 2 SOLiD_native F3 INSDC:read,
INSDC:quality

phred

decimal

csfasta file
qual file

P 4 SOLiD_native F3, R3 INSDC:read,
INSDC:quality

phred

decimal

qseq file F 1 Illumina_native F [INSDC:read,
INSDC:quality]

log-odds ascii @

qseq file
with
barcode

F 2 Illumina_native [F, B] [INSDC:read,
INSDC:quality]

log-odds ascii @

qseq file P 2 Illumina_native [F, R] [INSDC:read,
INSDC:quality]

log-odds ascii @

qseq files
with
barcode

P 3 Illumina_native [F,R,B] [INSDC:read,
INSDC:quality]

log-odds ascii @

qseq
int/cif

F 2 Illumina_native F, I [INSDC:read,
INSDC:quality]
INSDC:intensity

log-odds ascii @

qseq
int/cif

P 3 Illumina_native [F, R], I [INSDC:read,
INSDC:quality]
INSDC:intensity

log-odds ascii @

seq,
prb

F/P 2 Illumina_native F,R INSDC:read,
INSDC:quality

log-odds

decimal

seq,
prb,
int/cif

F/P 3 Illumina_native F,R INSDC:read,
INSDC:quality
INSDC:intensity

log-odds

decimal

seq, fna
qual

F/P 2 454_native INSDC:read,
INSDC:quality

phred

decimal

fastq F 1 Helicos_native [INSDC:read,
INSDC:quality]

phred

ascii

@

fastq with
decimal
quality
scores

F/P 1 fastq [INSDC:read,
INSDC:quality]

phred decimal

Fastq with
character
quality
scores

F/P 1 fastq [INSDC:read,
INSDC:quality]

log-odds ascii @ or !

Table 1 - File input use cases and DATA_BLOCK programming settings

3.1 Multiple Segments

The submitter may present different parts of the spot sequence in distinct files. The records
must exist in both files and be in the same order. The DATA_BLOCK. FILES.FILE.READ_LABEL
connects the file with the named read in a spot descriptor.

For a certain spot descriptor:

 <SPOT_DESCRIPTOR>

 <SPOT_DECODE_SPEC>

 <NUMBER_OF_READS_PER_SPOT>2</NUMBER_OF_READS_PER_SPOT>

 <READ_SPEC>

 <READ_INDEX>1</READ_INDEX>

 <READ_LABEL>forward</READ_LABEL>

 <READ_CLASS>Application Read</READ_CLASS>

 <READ_TYPE>Forward</READ_TYPE>

 <BASE_COORD>1</BASE_COORD>

 </READ_SPEC>

 <READ_SPEC>

 <READ_INDEX>2</READ_INDEX>

 <READ_LABEL>reverse</READ_LABEL>

 <READ_CLASS>Application Read</READ_CLASS>

 <READ_TYPE>Reverse</READ_TYPE>

 <BASE_COORD>37</BASE_COORD>

 </READ_SPEC>

 </SPOT_DECODE_SPEC>

 </SPOT_DESCRIPTOR>

can have the associated RUN code:

 <DATA_BLOCK name = "HWX170-FC8080_1000" sector="1">

 <FILES>

 <FILE filename="HWX170-FC8080_1000_1_1.qseq"

 filetype="fastq"

 checksum_method="MD5"

 checksum="d41d8cd98f00b204e9800998ecf8427e">

 <READ_LABEL>F</READ_LABEL>

 <DATA_SERIES_LABEL>INSDC:read</DATA_SERIES_LABEL>

 <DATA_SERIES_LABEL>INSDC:quality</DATA_SERIES_LABEL>

 </FILE>

 <FILE filename="HWX170-FC8080_1000_1_2.qseq"

 filetype="fastq"

 checksum_method="MD5"

 checksum="204e9800998ecf8427ed41d8cd98f00b">

 <READ_LABEL>R</READ_LABEL>

 <DATA_SERIES_LABEL>INSDC:read</DATA_SERIES_LABEL>

 <DATA_SERIES_LABEL>INSDC:quality</DATA_SERIES_LABEL>

 </FILE>

 </FILES>

 </DATA_BLOCK>

3.2 Multiple Data Series

A native format submission may consist of a single data block containing multiple data series
(columns) each represented by a distinct file. The DATA_BLOCK.
FILES.FILE.DATA_SERIES_LABEL can be used to define a precise mapping between components
and columns.

 <DATA_BLOCK>

 <FILES>

 <FILE filename='Solid0044_20081126_2_F3.csfasta'

 filetype="SOLiD_native"

 checksum_method="MD5"

 checksum="d41d8cd98f00b204e9800998ecf8427e" >

 <DATA_SERIES_LABEL>INSDC:read</DATA_SERIES_LABEL>

 </FILE>

 <FILE filename='Solid0044_20081126_2_F3_QV.qual'

 filetype="SOLiD_native"

 checksum_method="MD5"

 checksum="9800998ecf8427ed41d8cd98f00b204e">

 <DATA_SERIES_LABEL>INSDC:quality</DATA_SERIES_LABEL>

 </FILE>

 </FILES>

 </DATA_BLOCK>

3.3 Combining Segments and Data Series

The two parameters DATA_BLOCK.FILES.FILE.READ_LABEL and
DATA_BLOCK.FILES.FILE.DATA_SERIES_LABEL can be combined into a two dimensional
specification of files to segments and columns.

 < DATA_BLOCK>

 < FILES>

 < FILE f ilenam e= 'So lid 0044_20081126_2_F3.csf ast a'

 f ilet yp e= "SOLiD_nat ive"

 checksum _m et hod = "MD5"

 checksum = "d 41d 8cd 98f 00b 204e9800998ecf 8427e">

 < READ_LABEL> F3< /READ_LABEL>

 < DATA_SERIES_LABEL> INSDC:read < /DATA_SERIES_LABEL>

 < /FILE>

 < FILE f ilenam e= 'So lid 0044_20081126_2_F3_QV.q ual'

 f ilet yp e= "SOLiD_nat ive"

 checksum _m et hod = "MD5"

 checksum = "9800998ecf 8427ed 41d 8cd 98f 00b 204e">

 < READ_LABEL> F3< /READ_LABEL>

 < DATA_SERIES_LABEL> INSDC:q ualit y< /DATA_SERIES_LABEL>

 < /FILE>

 < FILE f ilenam e= 'So lid 0044_20081126_2_R3.csf ast a'

 f ilet yp e= "SOLiD_nat ive"

 checksum _m et hod = "MD5"

 checksum = "4d 1d 8cd 98f 00b 204e9800998ecf 8427e" >

 < READ_LABEL> R3< /READ_LABEL>

 < DATA_SERIES_LABEL> INSDC:read < /DATA_SERIES_LABEL>

 < /FILE>

 < FILE f ilenam e= 'So lid 0044_20081126_2_R3_QV.q ual'

 f ilet yp e= "SOLiD_nat ive"

 checksum _m et hod = "MD5"

 checksum = "8900998ecf 8427ed 41d 8cd 98f 00b 204e">

 < READ_LABEL> R3< /READ_LABEL>

 < DATA_SERIES_LABEL> INSDC:q ualit y< /DATA_SERIES_LABEL>

 < /FILE>

 < /FILES>

 < /DATA_BLOCK>

3.4 Specifying Qualities

Quality forms are particularly problematic as their formats are not well constrained. To better
support this form of submission certain DATA_BLOCK parameters can be used to reduce the
ambiguity of the input data.

The DATA_BLOCK.FILES.FILE.quality_scoring_system parameter can be used to specify
whether the quality scores encountered in the fastq file are phred scale or log-odds scale. The
SRA will convert log-odds into phred, but to do this properly the loader must know whether the
log-odds scale is being used. For example:

 < DATA_BLOCK nam e= "KN-930" sect o r= "1">

 < FILES>

 < FILE f ilenam e= "KN-930_1.f ast q "

 f ilet yp e= "f ast q "

 q ualit y_scor ing_syst em = "log-odd s"

 q ualit y_encod ing= “ascii”

 ascii_of f set = "@">

 < DATA_SERIES_LABEL> INSDC:read < /DATA_SERIES_LABEL>

 < DATA_SERIES_LABEL> INSDC:q ualit y< /DATA_SERIES_LABEL>

 < /FILE>

 < /FILES>

 < /DATA_BLOCK>

The DATA_BLOCK.FILES.FILE.quality_encoding parameter can tell whether the quality string in
the fastq or native file is an ASCII character based string or an array of decimal values.

The DATA_BLOCK.FILES.FILE.ascii_offset tells which character is used as the basis (the zero) for
the quality scores (choices are ascii 33 (!) or ascii 64(@)). Note that values can be negative.
Negative values may be valid if the DATA_BLOCK.FILES.FILE.quality_scoring_system parameter
is set to “log-odds”.

For example, consider the following sequencing data files :

gizmo2> sffinfo -s EAY20JP03.fna | head -n 2

>EAY20JP03GX7O6

GGGGGGGGGTAGGGGATGATGCCTTTGCAGTCAGTGCGGTGTCTGACAGCAACAGTGAGA

gizmo2> sffinfo -q EAY20JP03.qual | head -n 2

>EAY20JP03GX7O6

27 18 13 10 7 5 3 1 1 20 25 41 34 21 9 28 24 28 24 28 28 35 25 38 31 14 28 28 28 28 27

28 28 27 28 28 28 35 26 28 27 28 28 28 28 27 28 25 27 28 35 25 28 28 28 25 28 25 28 25

These can be represented with the following XML:

 < DATA_BLOCK>

 < FILES>

 < FILE f ilenam e= "EAY20JP03.f na"

 f ilet yp e= "454_nat ive"

 checksum _m et hod = "MD5"

 checksum = "d 41d 8cd 98f 00b 204e9800998ecf 8427e">

 < DATA_SERIES_LABEL> INSDC:read < /DATA_SERIES_LABEL>

 < /FILE>

 < FILE f ilenam e= "EAY20JP03.qual"

 f ilet yp e= "454_nat ive"

 checksum _m et hod = "MD5"

 checksum = "9800998ecf 8427ed 41d 8cd 98f 00b 204e"

 q ualit y_encod ing= "d ecim al">

 < DATA_SERIES_LABEL> INSDC:q ualit y< /DATA_SERIES_LABEL>

 < /FILE>

 < /FILES>

 < /DATA_BLOCK>

Another example :

 < DATA_BLOCK>

 < FILES>

 < FILE f ilenam e= "s_7_seq uence.f ast q "

 f ilet yp e= "f ast q "

 checksum _m et hod= "MD5"

 checksum = "d 41d 8cd 98f 00b 204e9800998ecf 8427e"

 q ualit y_scor ing_syst em = "phr ed "

 q ualit y_encod ing= “ascii”

 ascii_of f set = "!">

 < DATA_SERIES_LABEL> INSDC:read < /DATA_SERIES_LABEL>

 < DATA_SERIES_LABEL> INSDC:q ualit y< /DATA_SERIES_LABEL>

 < /FILE>

 < /FILES>

 < /DATA_BLOCK>

Note that even with the offset of @, negative values (down to -5) may be generated by the
decoding.

3.5 Using Filename and Checksum Attributes

New FILE attributes of checksum_method and checksum have been introduced in order to
provide the loader a specification of what files to actually load. This separates concerns of
verifying that a transmission of data arrived intact at NCBI, and the need to direct the loader’s
activities to individual components within that transmission. The combination of filename and
checksum are used to verify file identity and integrity in both cases. Consequently, the
RUN.DATA_BLOCK.FILES.FILE.filename and RUN.DATA_BLOCK.FILES.FILE.checksum can, but
do not have to be the same values entered into the SUBMISSION.FILES.FILE.filename and
SUBMISSION.FILES.FILE.checksum.

4 Implications for Loader Design
The changes in this document imply changes to both the Toolkit and the submission pipeline.

a. SRA, SRF, SFF file types are determined by their magic number (file command). If this
fails, they are regarded as “Text” files. Text files are either one of the “native” platform
types, or generic “fastq”.

b. Filenames are NOT relied upon in order to decide how to process the content. The XML
must specify the necessary information. This protects against the tendency for
instrument manufacturers to change the file names of their standard output files.

c. The final archival representation of single dimensional quality scores is always the phred

scoring system. The DATA_BLOCK settings exist in order to tell the loader how to
interpret the input data. Log-odds representation is converted to phred representation
as part of the loading process. The original log-odds scores are NOT preserved in the
SRA.

d. “Native” loaders use grammars specified in the SRA File Formats Guide. If a loader is
asked to parse files according to a certain native file model (for example,
“Illumina_native”, it uses a limited set of grammars to determine the filetype of each
input file. If an input file fails to match one of the grammars, the load should fail. The
loader should indicate on which line of input the failure occurred.

e. The “Fastq” loader uses a set of grammars specified in the SRA File Formats Guide. If no
grammar matches the input file, the load fails. The loader should indicate on which line
of input the failure occurred.

f. Read names are specified as spot addresses according to the naming rule for each
“native” grammar. For native loaders, read names must be unique in the file, be of the
same order if found split between multiple files, and be within reasonable ranges
determined by the vendor. Read names of runs successfully loaded with “native”
loaders are indexed. -0 is rounded to 0.

g. Read names are not interpreted, indexed, or tested for uniqueness in files with filetype
“fastq”. Read names from “fastq” type input are NOT preserved in the SRA.
Consequently, secondary analysis depending on fastq input cannot be processed by
NCBI, because of the inability to link read names before accessioning.

h. The “Fastq” filetype does NOT support mate pairs, multiply segmented reads (each of
which is in a different file), or data series that are found in different files.

i. If an input file cannot be interpreted according to a solution in Table 1 - File input use
cases and DATA_BLOCK programming settings then the input is rejected and the load

fails. The user visible error message should indicate “Submitted filetype or format is not
supported.”

j. The loader should fail to load the run if any data block among several data blocks fails to
load, and indicate which data block failed to load.

k. Loading may terminate with exception at the first instance of error without the need to
determine further errors in that load attempt. The loader should indicate which file
caused the exception.

l. The loader should be repeatable given the same input and the initial starting state.
There should be a method in the loading pipeline to reinitialize a load once an exception
has been thrown and loading has stopped.

m. A 454_native loader should be developed.

n. A Helicos_native loader should be developed.

o. The loaders that limit the number of data blocks that can be loaded in one run need to
be changed to accommodate the serial attribute that orders the load of data blocks.

p. A new column in the SRA corresponding to member_name should be added in order to
store the member assignment from a user-demultiplexed bar code run.

q. The data series types defined in this document should be added to the Toolkit:

 INSDC:read

 INSDC:read_filter

 INSDC:quality

 INSDC:intensity

 INSDC:signal

 INSDC:noise

 INSDC:position

 INSDC:clip_quality_left

 INSDC:clip_quality_right

